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Convex transverse curvature effects in wall-bounded turbulent flows are significant if 
the boundary-layer thickness is large compared to the radius of curvature (large 
y = 8/a).  The curvature affects the inner part of the flow if a+, the cylinder radius in 
wall units, is small. 

Two direct numerical simulations of a model problem approximating axial flow 
boundary layers on long cylinders were performed for y = 5 (a+ FZ 43) and y = 11 
(a+ z 21). Statistical and structural data were extracted from the computed flow fields. 
The effects of the transverse curvature were identified by comparing the present results 
with those of the plane channel simulation of Kim, Moin & Moser (1987), performed 
at a similar Reynolds number. As the curvature increases, the skin friction increases, 
the slope of the logarithmic region decreases and turbulence intensities are reduced. 
Several turbulence statistics are found to scale with a curvature dependent velocity 
scale derived from the mean momentum equation. Near the wall, the flow is more 
anisotropic than in the plane channel with a larger percentage of the turbulent kinetic 
energy resulting from the streamwise velocity fluctuations. As the curvature increases, 
regions of strong normal vorticity develop near the wall. 

1. Introduction 
Turbulent flows that evolve over surfaces with curvature normal to the mean flow 

are common in engineering applications. However, it is only for strong curvatures that 
the curvature effects become noticeable. For this reason this flow has received less 
attention than its planar counterpart, and the body of experimental data available is 
limited. Transversely curved turbulent flows with large curvature effects occur, for 
example, over sonar devices towed by long cables. Of particular interest in these flows 
are the characteristics of the wall pressure fluctuations (Neves & Moin 1994, 
hereinafter referred to as Part 2). 

In order to identify the basic flow unit capable of sustaining turbulence in the plane 
channel flow, Jimenez & Moin (1991) conducted a series of numerical experiments in 
which they shortened the length and the width of the computational domain. The 
resulting flow was called the minimal flow unit and consisted of a single fundamental 
near-wall structure. Since the transversely curved flow is naturally periodic in the 
azimuthal direction, and since the near-wall domain becomes smaller as the radius of 
the cylinder decreases, this flow can be viewed as a natural minimal flow. 

t Present address: Naval Research Laboratory, Washington DC 20375-7220, USA. 
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FIGURE 1. Curvature parameters y = 8 / a  and a+ of available experimental data for the axial turbulent 
flow along a circular cylinder. A, Luxton et al. (1984); +, Lueptow et al. (1985) and Lueptow & 
Haritonidis (1987); x ,  Willmarth & Yang (1970) and Willmarth el al. (1976); 0, Rao & Keshavan 
(1972); 0, Afzal& Narasimha (1976); V, Richmond (1957); 0, Yu(1959); 0,  present calculations. 

In turbulent flows with transverse curvature there is an additional lengthscale, the 
cylinder radius, a. The complications introduced by the new lengthscale are evident in 
the laminar flow. While in the planar case the absence of a lengthscale leads to the self- 
similar Blasius velocity profile, in the axisymmetric boundary layer there is no self- 
similar laminar solution (Seban & Bond 1951). 

The extra lengthscale gives rise to several flow regimes that are characterized by the 
ratios of the cylinder radius to the flow lengthscales: the boundary-layer thickness S, 
and the viscous lengthscale v/u,. The two resulting parameters, y = &/a and a+ = au,/v, 
define a two-dimensional parameter space in which three flow regimes can be identified. 
If y is small the curved boundary layer is similar to the planar boundary layer. When 
the boundary layer is several times thicker than the radius (large y), the transverse 
curvature affects the flow differently depending on the magnitude of a+. If y is large, 
and a+ is also large, then the curvature affects only the outer part of the flow. If y is 
large and a+ is small, the curvature affects both the inner and the outer parts of the 
flow. 

The range of the curvature parameters y and a+ that have been investigated 
experimentally is shown in figure 1. Lueptow (1988) provides a comprehensive review 
of the experimental investigations of this flow. With the exception of Afzal & 
Narasimha (1976), whose boundary layers have characteristics very similar to those of 
the flat plate, y is large enough in the experiments for the curvature to affect the outer 
part of the flow. In addition, the experiments of Luxton, Bull & Rajagopalan (1984) 
(9 < a+ < 47 and 26 < y < 42) and of Willmarth et al. (1976) (2 < y < 42 and a+ as 
small as 33) are within the range where both the inner and outer parts of the flow 
should be affected. 

One of the characteristics of flows with transverse curvature is a larger skin friction 
coefficient (Cf) than in a planar flow with similar Reynolds number (see for example 
Rao & Keshavan (1972) or Willmarth et al. (1976)). In the viscous sublayer of 
transversely curved flows the momentum equilibrium is expressed by r7 = m, (Glauert 
& Lighthill 1955). With the same assumptions as in the planar flow Reid & Wilson 
(1963) and Rao (1967) proposed a curvature dependent law of the wall, 
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U+ = a+ In (1 +y+/a+), which predicts curvature effects on the sublayer for sufficiently 
small a+. 

In order to achieve large y, experiments are typically performed over long tubes or 
wires with very small diameter (Luxton et al. 1984; Lueptow, Leehey & Stellinger 1985; 
Lueptow & Haritonidis 1987). In such experimental facilities, the structural isolation 
of the wires, the aeroelastic interaction between the flow and the wire, the alignment 
of the cylinder with the mean flow, and the cylinder sag are major concerns. In 
addition, if a+ is small, the size of the measuring probe (e.g. hot wire) relative to the 
cylinder diameter becomes an issue in near-wall measurements. Finally, some of the 
measurement techniques used are based on the assumption that close to the wall the 
mean velocity profile is the same as that of the flat plate (e.g. Richmond 1957; Lueptow 
et al. 1985). Attempts to address some of these problems are described by Willmarth 
& Yang (1970) and Lueptow & Haritonidis (1987). 

If y is not large (Rao & Keshavan 1972; Lueptow et al. 1985), the logarithmic region 
of the mean velocity profile has the same slope as the planar case. This flow regime is 
described analytically by Afzal & Narasimha (1976) by the method of matched 
asymptotic expansions. They conclude that when y = O(1) and in the limit of a++ co, 
the axisymmetric turbulent boundary layer must have logarithmic and velocity defect 
profiles of the same form as in the planar turbulent boundary layer. The two 
parameters in the logarithmic velocity profile are found to depend on y (Afzal & 
Narasimha 1976). As y increases and a+ decreases, the mean velocity profiles exhibit 
a logarithmic region with a decreasing slope (Lueptow et al. 1985), and for sufficiently 
large y and small a+, the logarithmic region deteriorates and becomes negatively curved 
(Willmarth et al. 1976; Luxton et al. 1984). Some effort has been devoted to identifying 
the curvature dependence of the logarithmic velocity profile, however, it is clear from 
Lueptow's (1988) review that no consensus exists on this issue. Nevertheless, the 
available data suggests that when y is small and a+ is large the slope of the logarithmic 
region shows a tendency to scale with y (Lueptow et al. 1985). As y increases and a+ 
decreases, the logarithmic profile depends on both parameters (Willmarth et al. 1976; 
Luxton et al. 1984). 

The Reynolds shear stress in the outer part of the transversely curved boundary layer 
is lower than its planar counterpart (Lueptow et al. 1985). Reynolds shear stress 
quadrant detection in the transversely curved turbulent boundary layers are similar to 
those in the planar geometry (Lueptow & Haritonidis 1987). At y+ M 39, Lueptow & 
Haritonidis (1987) measure fractional contributions from second and fourth quadrant 
events higher than in the planar case for weak events. Intense events are found to have 
a lower contribution to the Reynolds shear stress. 

The axial and normal turbulence intensities measured by Luxton et al. (1984) or 
Lueptow & Haritonidis (1987) are also lower than their flat plate counterparts in the 
outer part of the boundary layer. Close to the wall (y+ < 20), the measured axial 
intensities have magnitudes similar to those of the planar case, with maxima 
((G)'''/U, M 3.2) also located at y+ N 12. 

Through a visualization study of axial flow over a cylinder, Lueptow & Haritonidis 
(1 987) observed large-scale structures moving across the cylinder. Since these large 
structures have an azimuthal (spanwise) velocity component, it is expected that they 
should significantly affect the azimuthal velocity intensity fluctuations, which 
unfortunately were not measured. Similar large-scale structures were also observed by 
Luxton et al. (1984), but only for larger curvatures (y  > 20). Luxton et al. (1984) 
suggested that these large-scale structures are important for turbulence generation in 
this flow. 
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The current study was undertaken to address several issues that have not yet been 
addressed in the literature on transversely curved boundary layers. In particular, many 
statistical quantities of importance to both modelling and theory are not available (e.g. 
full Reynolds stress tensor, terms in the balance equations for the Reynolds stress and 
vorticity statistics), and thus the impact of transverse curvature on these quantities is 
not known. Also, little is known about the effects of transverse curvature on the 
familiar near-wall turbulent structures. Finally, because of its relevance to sonar 
applications, the behaviour of the wall pressure is of particular interest in this flow. In 
this paper, the statistical characteristics and instantaneous structure of the velocity field 
are presented. The wall pressure is discussed in Part 2. 

A brief description of the model problem and numerical techniques is given in $2. 
In $ 3  the properties of the mean flow are discussed and compared with the available 
experimental data. In $4 turbulence intensities and the Reynolds shear stress are 
presented and a curvature dependent local velocity scale is derived from the 
momentum equations. Vorticity statistics are presented in Q 5.  Finally, the in- 
stantaneous structural characteristics of the flow are presented via contour plots of 
instantaneous fields in $ 6 .  

2. The model flow and numerical methods 
A spatially developing boundary layer on a long cylinder, which is the physical flow 

of interest, has two features that complicate numerical simulation; the spatial growth 
and the semi-infinite domain. To avoid these difficulties we consider a model problem 
that has the key features of a transversely curved boundary layer (i.e. a wall-bounded 
shear flow with transverse curvature of radius much smaller than the shear-layer 
thickness) but which does not have these complicating features. The model is the axial 
flow between concentric cylinders driven by a mild streamwise pressure gradient. The 
width of the gap between the cylinders (8) corresponds roughly to the thickness of a 
boundary layer, and we define the curvature parameter y = S/a, where a is the inner 
cylinder radius. Unless otherwise stated, S is used along with the friction velocity u, for 
non-dimensionalization throughout the remainder of the paper, and the density is 
assumed to be one. Thus, in these units the radial (r)  domain is r ~ [ a ‘ ,  a‘+ 11, and the 
curvature parameter is y = l/a’, where a’ = a/& is the non-dimensional cylinder 
radius. The non-dimensional radial distance from the cylinder is y = r - a’. In what 
follows, the prime will be dropped for simplicity (thus a now refers to the non- 
dimensional radius). The mild streamwise pressure gradient that drives the flow is 
determined by requiring that the total mass flux be constant, and like the plane 
channel, this flow becomes statistically stationary. In addition to y, the model flows can 
be characterized by one of several Reynolds numbers. The four that are reported here 
are Re, = u,&/v, Re, = U ,  &/v ,  where U,  is the mean velocity at the outer cylinder (see 
below), Re, = U ,  av and a+ = u,a/v. 

At the inner cylinder (r = a), the velocity ( V  is the total velocity, v is the fluctuating 
velocity) satisfies no-slip boundary conditions, 

V(,= ,  = 0. (1) 

To better approximate the properties of a boundary layer, the surface shear stress is 
made zero at the outer cylinder, thus 
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Y 5 11 
Lz 4n 

2676 
Li, = 2na' 268 
Lf = 2x(aC+S+) 1608 
A!= L:/N, 14 

A,+ = L$/N ,  25 
(R> N,, R.,, 

= Li./NH 4 

(192, 96, 65) 

6n 
4656 

141 
1692 

14 
1 

13 
(320, 96, 129) 

TABLE 1. Grid resolution parameters 

This model problem probably does not provide an accurate representation of the 
outer regions of a boundary layer owing to the truncated domain. For example, the 
large-scale viscous-inviscid interactions of the type reported by Luxton et al. (1984) 
and Lueptow & Haritonidis (1987) are precluded. However, it is expected that the near- 
wall features of the flow will be insensitive to the details of the outer boundary 
conditions. This is supported by our experience in comparing the plane channel flow 
of Kim, Moin & Moser (1987) with the turbulent boundary layers of Spalart (1988). 
Furthermore, the effects of the outer boundary on the flow near the wall diminishes 
with increasing curvature (see the vorticity contours in figure 27). 

In the azimuthal (0) direction, the flow is naturally periodic. In the streamwise or 
axial direction (z) ,  periodic boundary conditions with period L, are used. The variation 
of the velocities in these directions are represented by Fourier expansions. In the radial 
direction, Chebyshev polynomial expansions (see e.g. Gottlieb & Orszag 1977) are 
used. These expansions promote high resolution at the boundaries of the domain (Y = a 
and r = a + 1). This is appropriate for the inner boundary where no-slip conditions are 
imposed. However, at the outer edge of the domain, fine resolution is not necessary 
because no sizeable velocity gradients are expected there. To avoid this waste of 
resolution, the radial coordinate mapping 

is used, which increases the resolution close to the cylinder surface at the expense of the 
resolution at the outer edge of the computational domain. In this expression, the 
Chebyshev variable 5 E [ - 1,1] o r  E [a, a + 11 and the parameter ,!? = 6 was used. 

The spatial resolution parameters describing the two turbulent flow simulations 
reported here are shown in table 1. Note that the effective azimuthal resolution, 
A 6  = 2nr/N,, is the coarsest at the outer edge of the domain (r  = a +  1). On the other 
hand, near the wall the simulations are very well resolved in the azimuthal direction. 
At the outer edge, the azimuthal resolution appears to be adequate as shown by the 
velocity spectra. Likewise, the axial resolution appears to be adequate (Neves, Moin & 
Moser 1992). The length of the computational domain in the axial direction is set to 
be sufficiently large to ensure that the velocity is decorrelated for separations larger 
than half of the computational box, so that the imposed periodic boundary conditions 
will have minimal effects on the turbulence. 

In cylindrical coordinates the Navier-Stokes equations are coupled through the 
advection terms as well as through the viscous terms. In the numerical approach 
adopted, the curvature terms of the viscous operators are treated explicitly (Neves 
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et al. 1992) without imposing a severe stability limitation. The pressure is calculated 
through a variant of the method of Kleiser & Schumann (1981) and continuity at the 
boundaries is imposed accordingly (see Neves et al. (1992) for details). In addition, a 
dependent variable Y = a&/i3z-aV,/aO is defined. The velocity field is obtained from 
the solution of the partial differential equations for V ,  and Y and an algebraic system 
of equations for the Fourier coefficients of & and V,. A semi-implicit second-order 
accurate time-advancement scheme was used. The numerical method was validated by 
calculating several two- and three-dimensional states of the Taylor-Couette flow. 
The results of these tests were in very good agreement with both experiments and 
previous calculations (Donnelly & Simon 1960; Moser & Moin 1984; King et al. 1984), 
indicating that the numerical method provides an accurate representation of the 
Navier-Stokes equations in this geometry. 

To begin the simulations, a mean velocity profile with the desired mass flux is 
specified along with random velocity fluctuations. The mass flux and viscosity are 
selected to obtain the desired friction velocity Reynolds number (approximately). For 
each flow the equations were integrated until the solution became statistically 
stationary, so the only important property of the initial conditions is the mass flux. 
After becoming stationary, the simulations were continued to accumulate statistics. 

3. Mean velocity statistics 
Mean flow parameters for the present transversely curved flow simulations as well 

as for the plane channel (y = 0) are reported in table 2. Because the Reynolds numbers 
of the three simulations are similar, the differences in table 2 are due to the transverse 
curvature. For comparison, tables 3 , 4  and 5 contain the mean flow parameters of the 
experiments of Willmarth et al. (1976), Luxton et al. (1984) and Lueptow & Haritonidis 
(1987), respectively. In agreement with experimental observations, the skin friction 
coefficient, 

2 

c,= 2($) > (4) 

increases with increasing curvature (by as much as 63 YO for y = 11) when compared 
with a plane channel flow with comparable Reynolds number. However, in the 
simulations the magnitude of this increase is larger than has been observed 
experimentally (see below). In table 2 the boundary-layer displacement and momentum 
thicknesses (6* and 8" respectively) were computed using the following expressions 
given by Luxton et al. (1984) 

The express; 

(a+6*)'--a2 = 2 1 r 1 ( l - g ) r d r ,  

(a+8*)2-aZ = 2 [+' (g) (1 -g) r dr. 

for the displacement thickness (equation ( 5 ) )  is co sistent with the 
usual mass flux displacement argument, and the momentum thickness defined by (6) 
arises in the axisymmetric integral momentum equation. In this sense, the two 
definitions have the same physical meaning as their planar counterparts, and in the flat 
plate limit (y + 0), (5 )  and (6) reduce to their planar counterparts. Luxton et al. (1984) 
measured S* and 8* according to the above expressions and found values higher than 
in the simulations. This is probably a result of the larger y in the experiments. The 
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Y 0 

U+ 

Re, 3300 
Re7 180 

s* 0.141 
8* 0.087 
H 1.62 

- 

Cf 6.04 x 10-3 

Re, - 

5 
43 

3368 
214 
674 

8.07 x 10-3 

0.154 
0.123 
1.25 

TABLE 2. Mean flow parameters 

11 
21 

3418 
239 
311 

9.87 x 10-3 

0.152 
0.131 
1.15 

Y 4.7 16 37.5 
a+ 75 1 198 46 

69280 27 600 Re, 90380 
Re, 19230 4 330 736 

3.04 x 10-3 4.18 x 10-3 7.84 x 10-3 Cf 

TABLE 3. Experimental mean flow parameters (Willmarth et ul. 1976) 

Y 26 
U+ 47.4 

Re, 20386 
Re, 785 
S* 0.184 
o* 0.181 
H 1.014 

Cf 7.3 x 10-3 

26.9 41.6 

0.01 0.017 
32.1 13 

12 252 5 962 
455 140 

0.185 0.187 
0.182 0.182 
1.02 1.03 

TABLE 4. Experimental mean flow parameters (Luxton et ul. 1984) 

Y 6.74 7.16 8.0 
a+ 288 144 72 

23 700 12800 Re, 46330 
Re, 6419 3 209 1605 

3.5 x 10-3 3.8 x 10-3 4.1 x 10-3 Cf 

TABLE 5. Experimental mean flow parameters (Lueptow & Haritonidis 1987) 

shape factors ( H  = &*/O*) measured by Luxton et al. (1984) are around unity, whereas 
the shape factor in the simulations is larger than one and decreases with increasing y 
owing to an increase in the momentum thickness. 

3.1. The mean velocity projle 
The mean velocity profiles of the two transversely curved flows (y  = 5 and 11) are 
compared to that in the plane channel flow in figure 2. Because of the small values of 
a+, the viscous sublayer mean velocity profiles are slightly affected by the curvature of 
the wall. In contrast, most experiments (Rao & Keshavan 1972; Willmarth et af .  1976; 
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FIGURE 3. Total stress: analytical for cylinders with -, y = 5 and ----, y = 11 ; computed 

results with 0, y = 5 and A, y = 11. 

Lueptow et al. 1985) find no effect of curvature in the mean velocity profile for y+ c 20. 
Clearly, in many of these experiments a+ is too large for there to be a perceptible inner- 
layer effect (for example a+ x 140 and y x 7 in Lueptow & Haritonidis 1987). 
However, even in experiments in which the values of a+ are close to or below those of 
the simulations (e.g. Luxton et al. 1984; Willmarth et al. 1976), the measured mean 
velocity profiles appear to agree with the planar mean velocity profile for y+ < 20. This 
discrepancy may be caused by the difficulties in estimating the friction velocity in the 



Effects of convex transverse curvature on wall-bounded turbulence. Part 1 Effects of convex transverse curvature on wall-bounded turbulence. Part 1 

(a)  ' 
2 

1 

0 20 40 60 80 

357 

I I I I I 

0 20 40 60 80 

Y+ 
FIGURE 4. Root-mean-square velocity fluctuations : (a) axial velocity, (b) normal velocity, (c) 
azimuthal velocity; ---, plane channel (Kim et al. 1987); cylinders with ---, y = 5 and ----, 
y =  11. 



358 J.  C. Neves, P. Moin and R. D. Moser 

30 1 I 

0 20 40 60 80 

Y+ 
- - -  

FIGURE 5. The energy partition parameter K* = 2v,2/(v,2+vi): ---, plane channel (Lee et al. 
1990); cylinders with -, y = 5 and ----, y = 11. 

experiments. For example, in Willmarth et al. (1976) and Lueptow ef al. (1985), the 
friction velocity is estimated by fitting the near wall data to the flat-plate law of the 
wall. This can only be valid when a+ is large enough for the mean velocity profile to 
be unaffected in the fitting region. The range in y+ over which the data was fitted is not 
specified in these papers. However, the skin friction is under estimated by 13 YO and 8 YO 
when a similar procedure is applied to the simulation data (a+= 21 and 43, 
respectively) by matching the flat plate law of the wall at y+ = 12. 

In the planar boundary layer, the assumption that in the viscous sublayer the total 
stress is dominated by the viscous stress leads to the near-wall velocity profile, U+ = y+. 
For the axisymmetric boundary layer in the absence of a pressure gradient, the mean 
momentum equilibrium in the viscous sublayer is expressed by T/T ,  = a/r (Glauert & 
Lighthill 1955). Assuming that the Reynolds shear stress is negligible in comparison to 
the viscous stress leads to the analogous profile for axisymmetric flows (Reid & Wilson 
1963; Rao 1967), 

U+ =a+ln(l+$).  

Note that, to second order in y+, (7) is given by 

(7) 

Thus, the mean velocity in the viscous sublayer of transversely curved flows is equal to 
that of the planar viscous sublayer (U+ = y+) plus a curvature dependent correction. 
Clearly, if a+ is large the mean velocity profile near the wall does not deviate 
appreciably from the planar case. The mean velocity profiles given by (7) are better 
approximations to the computed near-wall velocity profiles than the planar law of the 
wall. 

As observed in several experiments (Lueptow et al. 1985; Luxton et al. 1984; 
Willmarth et al. 1976), the slope of the mean velocity profile in the logarithmic region 
decreases with increasing curvature and the profiles become negatively curved. 
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FIGURE 6 .  Pressure-strain term from the budget equation for normalized by v and u,: cylinders 

with -, y = 5 and ----, y = 1 1  ; ---, plane channel (Mansour et al. 1988). 

However, the dependence of the slope of the logarithmic region on the curvature is 
larger in the simulations than in experiments (Willmarth et al. 1976). Lueptow et al. 
(1985), for example, show that the slope of the logarithmic region is universal for small 
y. This is not surprising because for small y the curvature effects are limited to the outer 
part of the boundary layer in high-Reynolds-number flows. Based on the same 
measurements, Lueptow et al. (1985) also argued that the slope of the logarithmic 
region is not a function of a+. The latter conclusion, however, is questionable because 
in those experiments a+ is consistently large. These observations are in general 
agreement with the asymptotic analysis of the axisymmetric momentum equations in 
the limit of y = O(1) and a++ cc (Afzal & Narasimha 1976). To lowest order in this 
limit, the axisymmetric boundary layer has both a logarithmic region and an outer 
velocity defect law. For smaller a+ the parameters of the velocity profile in the two 
regions depend on both y and a+. The measurements of Luxton et al. (1984) for flows 
with larger y than in the present simulations but with similar a+ show logarithmic 
region slopes comparable to those reported here. The lack of consensus on this issue 
is summarized in the review of Lueptow (1988). A parametric study is necessary before 
a conclusion can be reached, but it seems that the slope of the logarithmic region is a 
function of both a+ and y when both the inner and outer layers are affected. 

4. Turbulence statistics 
The statistical steady state is characterized by the equilibrium between the mean 

total stress and the applied streamwise pressure gradient. For the flows under 
consideration this is expressed by 

- 1 d <  a (a+1)2-rz -uv+-- = - 
Re dr r ( a + l ) 2 - a 2 ’  (9) 

Figure 3 shows the total stress (computed and analytic) for the present simulations. 
The computed and analytic curves coincide in both simulations, indicating that the 
statistical steady state has been achieved. 
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FIGURE 7. Reynolds shear stress normalized by u,: cylinders with -, y = 5 and ----, y = 1 I ; 
___ , plane channel (Kim et al. 1987). 

4.1. The turbulence intensities 
Turbulence intensities normalized with the friction velocity decrease throughout the 
layer as the curvature increases (figure 4). The streamwise component is the most 
energetic and the location of its maximum moves slightly towards the wall as the 
curvature increases. The smaller turbulent kinetic energy in the transversely curved 
flows can be attributed in part to the smaller surface area over which vorticity 
fluctuations can be generated relative to the volume of turbulent flow supported. The 
cylinder surface is apparently not less efficient as a source of turbulent kinetic energy; 
rather it has to supply a larger volume. Experimental data also show a reduction in the 
turbulence intensities with increasing curvature (Lueptow et al. 1985; Lueptow & 
Haritonidis 1987; Luxton et al. 1984). For experiments with comparable a+, Luxton et 
al. (1984) report a maximum value of the streamwise intensity, ($)liZ/Um z 0.16, 
similar to the simulation result of 0.15. However, for the larger a+ experiments of 
Lueptow & Haritonidis (1987), the maximum value of ($)‘/2/u, of 3.3 is higher than 
in the flat plate and is contrary to the simulation results. 

Similarly, the normal (($)’”) and azimuthal ((%)’/’) intensities are lower than in the 
planar case. However, the reductions in the normal and azimuthal intensities are 
greater than that of the axial (streamwise) intensity. The energy partition parameter 
(Lee, Kim & Moin 1990), - 

shown in figure 5, is a measure of the relative contribution to the turbulent kinetic 
energy of the streamwise turbulence intensity and the intensities normal to the mean 
flow. The attenuation of the normal and azimuthal velocity fluctuations is strongest for 
y+ < 30 and increases with curvature. 

Figure 5 suggests that the transfer of energy from the streamwise velocity component 
to the other two velocity components is reduced as the curvature increases. In the 
budget equations of the turbulence intensities the pressure-strain terms are responsible 
for the intercomponent energy transfer. As shown in figure 6, as the curvature increases 
the pressure-strain term in the budget of the axial (streamwise) intensity decreases 
significantly throughout the layer. 
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FIGURE 9. Velocity scaling function F ( y ; y ) :  ---, plane channel (y = 0) ;  
cylinders with -, y = 5 and ----, y = 11. 

4.2. The Reynolds shear stress 
The Reynolds shear stress (figure 7) is also reduced by curvature. The location of the 
maximum of the Reynolds shear stress profile is a function of y and moves towards the 
wall with increasing curvature. However, this does not affect the position of the 
maximum in the production ( - v , d d / d y )  of turbulent kinetic energy (y' 21 12, see 
figure 11 b). In the outer layer the measurements of Lueptow et al. (1985) show that the 
Reynolds shear stress decreases with increasing curvature in agreement with the 
simulation results. In the inner layer, the measurements of the Reynolds shear stress 
reported by Lueptow et al. (1985) for the transversely curved flows do not differ 
appreciably from those of the planar case. 

The velocity correlation coefficient, shown in figure 8, suggests that there are 
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FIGURE 10. Root-mean-square velocity fluctuations normalized by 6 :  (a) axial velocity, (b) normal 
velocity, (c) azimuthal velocity; ---, plane channel (Kim et al. 1987); cylinders with --, y = 5 
and ----, y = 11. 
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FIGURE 11. Reynolds shear stress (a), production (b)  and dissipation (c) of turbulent kinetic energy 
normalized by v/u,  and u': cylinders with -, y = 5 and ----, y = 1 1 ;  ---, plane channel 
(Mansour et al. 1988). 
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important differences both between the two transversely curved flows as well as 
between them and the plane channel. Close to the wall ( y  < 0.2), the streamwise and 
wall normal velocity fluctuations are increasingly better correlated as curvature 
increases. Away from the wall, the large curvature case (y = 11) shows a significant 
reduction in the correlation coefficient. This may be an indication of flow stabilization, 
although for y = 11 the flow is a self sustaining turbulent flow and reaches statistically 
steady state (figure 3) .  

4.3. The velocity scaling 
As a function of the distance to the wall the total stress, equation (9) can be rewritten 
as 

7 = u; - 1 (1 + =) (1 - y).  
l+YY Y + 2  

In this form it can be easily compared with its planar counterpart 7 = u,2(1 -y), which 
is a linear function of y .  These two expressions suggest the definition of a new y- 
dependent velocity scale for the transversely curved flows 

where 

This function is plotted in figure 9. In the planar limit (y-f 0), .F(y;y)-+ 1 and the 
planar velocity scale, u" = u,, is recovered. 

When scaled with u", the turbulence intensities and Reynolds shear stress profiles of 
the two curved flows collapse (figures 10 and 11 a). The collapse with the plane channel 
stresses is also satisfactory except for the azimuthal (spanwise) turbulence intensity. 
The turbulence production and viscous dissipation scale with u" in the outer part of the 
layer but apparently not near the wall, as shown in figures 11 (b) and 11 (c), respectively. 

4.4. Higher-order statistics 
The correlation coefficient profiles (figure 8) suggest that the Reynolds-shear-stress- 
producing events are strongly affected by curvature. The contribution of flow events to 
the production (or consumption) of turbulent kinetic energy can be assessed through 
the quadrant analysis of the Reynolds shear stress (Willmarth & Lu 1972). Two types 
of fluid motions contribute to positive v,v,, the outward motion of high-speed fluid 
(v, > 0 and v, > 0) and the inward motion of low-speed fluid (0, < 0 and v,. < 0). On 
the other hand, the inward motion of high-speed fluid (v, > 0 and u, < 0) and the 
outward motion of low-speed fluid (v, < 0 and v,. 3 0) contribute to negative Reynolds 
shear stress and production of turbulent kinetic energy. In transversely curved 
turbulent flows, the partition of the Reynolds shear stress among the four quadrants 
is very similar to that of the plane channel, as shown in figure 12. It is a characteristic 
of wall-bounded flows that the Reynolds shear stress is dominated by the second- 
quadrant events (v, < 0 and v, > 0) in the outer layer, and by the fourth-quadrant 
events (v, > 0 and v,. < 0) in the inner layer. The crossover point between the 
dominance of second- and fourth-quadrant events occurs at the same distance from the 
wall (y' N 12) as in the plane channel. 

Likewise, at a given distance from the wall, the fractional contributions to the 
Reynolds shear stress in the transversely curved flows are similar to the corresponding 
contributions in the plane channel (Neves et al. 1992). This invariance of the fractional 
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contributions with curvature means that Reynolds shear stress events of any intensity 
contribute the same fraction of the total Reynolds shear stress in the transversely 
curved flows and in the plane channel. This is contrary to the measurements of 
Lueptow & Haritonidis (1987), who found that, in transversely curved flows, low- 
intensity Reynolds shear stress events accounted for a larger percentage of the total 
Reynolds shear stress than in the planar case. 

The skewness factors of the velocity fluctuations, shown in figure 13, indicate that 
there is a strong effect of curvature on the streamwise and wall normal velocity 
fluctuations. As required by the reflective symmetry of the Navier-Stokes equations, 
the skewness of uo is zero everywhere. However, there are small deviations from zero 
in the computed statistics (x 0.1, not shown) which are due to the finite statistical 
sample. 
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FIGURE 13. Skewness profiles of the velocity fluctuations: (a) S(uJ (streamwise), (b) S(u,) (wall- 
normal); ---, plane channel (Kim et al. 1987); cylinders with ---, y = 5 and ----, y = 11. 

Away from the wall (y+ > 40), the skewness of v, is positive and increases slightly 
with increasing curvature, as also observed by Luxton et al. (1984). In this region there 
are also strong negative streamwise velocity fluctuations, as denoted by the negative 
skewness of vz, which decreases with increasing curvature. 

Increasing the curvature does not significantly affect the skewness of the axial 
fluctuations (v,) close to the wall (y' < 20). On the other hand, for y+ < 30, there are 
significant differences in the skewness of the normal velocity fluctuations (v,) between 
the three flows. While in the plane channel for 5 < y+ < 30 the skewness of v, is 
negative, in the transversely curved flows the region of negative skewness diminishes 
and, for y = 11, the skewness of v,  is positive throughout the layer. For y+ < 12, where 
fourth-quadrant events dominate the Reynolds shear stress, the skewness of v, is 
positive. 

The flatness profiles of the velocity fluctuations are shown in figure 14. Near the wall 
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FIGURE 14. Flatness profiles of the velocity fluctuations: (a) F(u,) (streamwise), (b) 40,) (wall- 

normal); ---, plane channel (Kim et al. 1987); cylinders with -, y = 5 and ----, y = 11. 

(y' < 20), the flatness of u, decreases sharply with increasing curvature, indicating 
lower levels of intermittency. The flatness of v, also decreases in the near-wall region 
(y' < 5). For 5 < y+ < 30 the flatness of vz is not affected by the curvature and away 
from the wall (y' > 30) it increases with increasing curvature. 

5. The vorticity 
In cylindrical coordinates the vorticity components are given by 

The vorticity intensities normalized by the mean wall shear stress, shown in figure 15, 
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FIGURE 15. Root-mean-square vorticity fluctuations normalized by v and u,: (a) axial vorticity, (b) 
normal vorticity, (c)  azimutha! vorticity; ---, plane channel (Kim et al. 1987); cylinders with -, 
y = 5 and ----, y = 11. 
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Y 0 5 11 

Ye+ 21.0 19.7 20.1 
r: 16.7 13.8 13.5 

0: 2.31 1.26 0.83 
Y’ 0.139 0.092 0.061 
Re, 242.6 110.0 70.2 

TABLE 6. Streamwise vortex parameters 

0 0.5 1 .o 

(b)  0.4 

0 

FIGURE 16. Root-mean-square vorticity fluctuations normalized by v and u, in global coordinates for 
(a)  y = 5 and (b)  y = 11 : -, axial vorticity; ---, azimuthal vorticity; ----, normal vorticity. 

decrease with increasing curvature. Unlike the velocity intensities, the vorticity 
intensities do not collapse in the outer part of the layer when scaled with the velocity 
scale u”. As in the plane channel, the axial vorticity intensity exhibits a near-wall local 
minimum and local maximum. Kim et al. (1987) linked the locations and intensity of 
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FIGURE 17. Distribution of the inclination angle, Or,, of the projection of the vorticity vectors in 
(r,z)-planes for y = 5.0; data weighted with the magnitude of the projected vorticity. (a)  y' = 0.66; 
(b) y+ = 4.10; ( c )  y+ = 8.02; ( d )  y' = 16.31; (e) y+ = 25.38; (f') y+ = 38.76; ( g )  y+  = 51.85; (h )  
y+ = 69.66; (i) y+ = 96.25. 

these extrema to the average position and strength of the near-wall streamwise vortices. 
In their Rankine vortex model, the mean radius is estimated from the difference in the 
positions of the two extrema ( ~ & ~ ~ , y & ~ ~ ) ,  rQ = yLaz-  yLin.  The maximum value of the 
streamwise vorticity intensity is an estimate of the average strength (r) of the vortices, 
and the average tangential velocity at the edge of the vortices is given by U :  = P r : .  
The location of the maximum of the streamwise intensity (y;,,) is an estimate of the 
mean position of the centres of the vortex cores. 

These parameters and the vortex circulation Reynolds number, 

r Re - - = 2nv: r:, 
v 

are listed in table 6 for the two transversely curved flows as well as the plane channel 
of Kim et al. (1987). It is noteworthy that neither the core radius nor the position of 
the centre of these vortices changes appreciably with curvature, even though the 
strength of the vortices is greatly reduced. 

There are other important curvature effects on the vorticity intensities. Near the wall 
(y' < 7), the normal vorticity intensity ((q)''2) is virtually unaffected by the curvature, 
while the other vorticity components decrease. In the outer part of the flow, as in the 
plane channel flow, the three components of the vorticity intensity are equal (figure 16). 
Further insight into the way in which the transverse curvature affects the near-wall 
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FIGURE 18. Distribution of the inclination angle, O,,, of the projection of the vorticity vectors in 
(r,z)-planes for y = 11.0; data weighted with the magnitude of the projected vorticity. (a) 
y' = 0.72; (b) y' = 4.46; (c) y+ = 8.74; ( d )  y' = 17.77; (e) y+ = 27.66; cf) y+ = 42.24; (g )  y+ = 56.52; 
(h) y+ = 75.96; (i) y+ = 104.90. 

axial and normal vorticity intensities can be gained by analysing the orientation of the 
vorticity field. Here, we follow the approach of Moin & Kim (1985). The inclination 
of the projection of the vorticity vector in (r,z)-planes is given by 

The probability density functions (p.d.f.s) of Or,, weighted by the magnitude of the 
projected vorticity vector (Moin & Kim 1985), (0; + wz)/(o," + o:), are shown in figure 
17 for the y = 5 flow and in figure 18 for the y = 11 flow. In the expression above, ( ) 
indicates the mean of the quantity inside the brackets taken on the corresponding (z, 0) 
cylindrical surface. The following discussion refers to the weighted p.d.f.s, even though 
all the features described below are also evident in the unweighted p.d.f.s. The 
advantage of the weighting is that it enhances the contributions of the strong vorticity 
fluctuations. 

Throughout the discussion of the orientation of the vorticity vector, the reader 
should bear in mind that the plane channel flow fields to which these results are 
compared were from the large eddy simulation of Moin & Kim (1985), which was 
performed for a Reynolds number of 13800 (based on the centreline velocity and 
channel half-width). At the closest point to the wall (y' FZ 4) investigated by Moin & 
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FIGURE 19. Contours of axial velocity fluctuations (vJ, normalized by u,, on a plane normal to the 
mean velocity: (a) y = 5 with contour levels from - 5 . 2 ~ ~  to  3.554,; (b) y = 11 with contour levels 
from -4.9524, to 4.05y. The contour increment is 0.25u,. Solid contours denote the low-speed 
fluctuations (uz < 0) and the dotted contours denote the high-speed fluctuations (v, > 0). 
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FIGURE 20. Azimuthal two-point correlations of the velocity fluctuations for (a) y = 5.0 and for 
(6 )  y = 11 -, RIJLVZ, - ~ - -  , RVrV,> - ~ -  RWj; 

Kim (1985), the distribution of Or, is centred around 0" and 180" since the normal 
vorticity must go to zero at the wall owing to no-slip. In the transversely curved flows, 
this effect is not discernible in the histograms of O,, for y+ > 2. At y+ % 4, both curved 
flows have distributions of Or, that peak around & 90". This distribution of Or, persists 
up to y+ z 25 in the y = 5 flow and up to y+ z 40 in the y = 11 flow. Farther from the 
wall, the distributions gradually broaden, and by y+ z 52 in the y = 5 flow and y+ z 75 
in the y = 11 the peak shifts to - 135" and 45" as was observed by Moin & Kim (1985). 

Moin & Kim (1985) concluded that the main mechanism of vorticity stretching in the 
plane channel was stretching by the mean shear, which has its principal axis at 45" with 
the direction of the mean flow. When the normal and streamwise vorticity intensities 
are equal, the direction of the maximum vorticity in a shear flow is at 45" to the mean 
flow (Deissler 1969). As the curvature increases in the transversely curved flows, there 
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FIGURE 22. Contours of axial velocity fluctuations (u,), normalized by u, and v, on an unwrapped 
cylindrical surface at y' z 5 :  (a) y = 5 with contour levels from -2.2~4, to 5.5524,; (b)  y = 11 with 
contour levels from -2.2~~ to 4.85~~. The axial length of the domain displayed is 3n8 and the contour 
increment is 0 . 2 5 ~ .  Solid contours denote the low-speed fluctuations (vz i 0) and dotted contours 
denote the high-speed fluctuations (uZ > 0). 

is an increasingly thicker layer around the cylinder, in which the vorticity has the & 90" 
orientation. This suggests that, as the curvature increases, vortical structures inclined 
at 45" to the mean flow occur less frequently. 

6. Instantaneous turbulent flow structures 
Contours of the streamwise velocity fluctuations (vZ) on a (Y, @)-plane (normal to the 

mean flow) are shown in figure 19. In the smaller curvature case (y  = 5 ,  see figure 19a), 
the circumference of the cylinder is about 270 wall units and in the snap-shot shown 
four low-speed streaks are observed around the cylinder. In the strongly curved case 
(y  = 11, see figure 19b), the perimeter of about 140 wall units apparently can only 
support two low-speed streaks. A better measure of the mean spacing between the low- 
speed streaks is given by the azimuthal (spanwise) velocity correlations shown in figure 
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FIGURE 23. The lengthscale parameter L* = L@l'/2LiH) based on sZ: ---, plane channel (Lee et 
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, y =  11. 

20 (at y+ % 12). When measured in viscous units, the mean streak spacing is about 100 
in both flows. Note, however, that mean streak spacing A+ is approximately 
proportional to r+ (figure 21). Near the wall, this is a geometric effect owing to the 
variation of the local circumference with r .  

The low-speed streaks can be seen in the contour plots of u, on ( z ,  8) surfaces parallel 
to the cylinder at y+ = 5 (figure 22). Note that the negative contours seem to be more 
elongated in the streamwise direction for the y = 11 flow. 

A measure of the anisotropy of the flow structures is the ratio of the streamwise to 
the spanwise lengthscales (Lee et al. 1990), 

L(2) 
(17) L* = __ 2L'H' ' 

where L(') and L(') are the axial and azimuthal integral scales of the quantity of interest. 



(h)  

. .  
, .  

.... 

FIGURE 25. Contours of axial (streamwise) vorticity fluctuations (mJ, normalized by u, and u, on a 
plane normal to the mean velocity: ( a )  y = 5 with contour levels from -0.34u,'/u to 0.5u$/u; (b) 
y = 1 1  with contour levels from - O . ~ U : / V  to 0.38ug/u.  The contour increment is 0.04u;/v. Solid 
contours denote negative vorticity ((oZ < 0) and dotted contours denote positive vorticity (w, > 0). 

For example, when based on the axial (streamwise) velocity fluctuations, uz, L(') and 
L(') are given by 

respectively. L* based on the streamwise velocity fluctuations (z;,), which characterize 
the low-speed streaks, was computed by Lee et al. (1990) for the plane channel; their 
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FIGURE 26. Contours of azimuthal vorticity fluctuations (oJ,,). normalized by u7 and I J ,  on a ( r .  _)-plane 
through the axis of the cylinder. The axial length of the domain displayed is 37th': ( u )  y = 5 with 
contour levels from -0.74u:/u to 0.562C:/u; (b)  y = 11 with contour levels from -0 .9u f /u  to 0.42u;lu. 
The contour increment is 0.04uj/u. Solid contours denote negative vorticity ((,J,) < 0) (aligned with the 
mean vorticity) and dotted contours denote positive vorticity ((0,) > 0). 

results are compared to the present simulations in figure 23. Close to the wall 
( y+  < lo), L* is significantly increased with increasing curvature. Since the spanwise 
lengthscale of the low-speed streaks in wall units is not greatly affected by curvature, 
their streamwise lengthscale must increase with y .  Away from the wall (y+  > 20), L* 
for the y = 5 cylinder has essentially the same value as in the plane channel. In the 
larger curvature case ( y  = 11) L* away from the wall (y' > 20) is twice as large as its 
counterparts for the y = 5 cylinder and the plane channel. 

In addition to the low-speed streaks, near-wall flows are also characterized by near- 
wall vortical structures and internal shear layers. The lengthscale ratio defined in (1 s), 
computed for the axial (streamwise) and azimuthal (spanwise) vorticity fluctuations (0, 
and wo), are shown in figure 24. For y' > 10, the lengthscale ratios for the two vorticity 
components are close to their isotropic value of unity. Near the wall (y' < lo), where 
the mean shear is largest, the lengthscale ratios of oii and w, increase with increasing 
curvature. In particular, the higher near-wall L* based on w, suggests that the near-wall 
streamwise vortices become longer as the curvature increases. Note also that both 
vorticity lengthscale ratios are only affected by curvature near the wall ( y +  < 10). The 
near-wall vortices are further illustrated in figure 25 which shows contour plots of the 
axial (streamwise) vorticity in (Y, 8)-planes. 

The near-wall shear layers that develop at the interface of the low- and high-speed 
flow regions are common in the two transversely curved flows as shown in figure 26 and 
have features similar to those of the plane channel. Figures 25 and 26 suggest that the 
higher curvature ( y  = 11) flow is more quiescent in the outer region in agreement with 
the lower velocity correlation coefficient (figure 8). In figure 27 cross-sections of the 
internal shear layers by ( r ,  @-planes show that the shear layers have large azimuthal 
(spanwise) lengthscales relative to the cylinder radius. As the curvature increases the 
ratio of the spanwise lengthscale of the shear layers to the cylinder radius increases. 
Cuts of these shear layers by ( z ,  @-planes parallel to the cylinder (figure 28) at y' z 15 
show a characteristic arrow shape that is more noticeable in the higher curvature 
(y  = 11) flow. These arrow shapes are the expected footprints of nearly planar inclined 
shear layers on the unwrapped cylindrical surfaces on which the vorticity contours are 
plotted in figure 28. 

7. Summary and conclusions 
The main objective of this part of the study was to investigate the characteristics of 

axial turbulent flows over long cylinders. For a sufficiently large ratio of the cylinder 
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FIGURE 27. Contours of azimuthal vorticity fluctuations (we), normalized by uT and v ,  on a plane 
normal to  the mean velocity: (a )  y = 5 with contour levels from -0.58ur/v to 0.54u,2/v; (6) y = 11 
with contour levels from -0.66u:/v to O . ~ U , ~ / V .  The contour increment is 0.04u:lv. Solid contours 
denote negative vorticity (oH < 0) (aligned with the mean vorticity) and dotted contours denote 
positive vorticity (me > 0). 



Eflects of conreY transrrrse curvature on wall-hounded turbulence. Part I 379 

FIGURE 28. Contours of azimuthal vorticity fluctuations (w,), normalized by u7 and v ,  on an 
unwrapped cylindrical surface at  J" z 15. The axial length of the domain displayed is 3x8: (a)  y = 5 
with contour levels from -0.58u:/v to 0.32u%/u; (h )  y = 11 with contour levels from -0.73u,2/v to 
0.62uflv. The contour increment is 0.05 u ~ / v .  Solid contours denote negative vorticity ( w ~  < 0) 
(aligned with the mean vorticity) and dotted contours denote positive vorticity ((do > 0). 

radius to the boundary-layer thickness (7) curvature affects the outer part of the layer. 
If the inner flow is to be influenced by the curvature then the ratio of the cylinder radius 
to the viscous lengthscale au,/v must also be small. Two simulations of transversely 
curved turbulent flows were performed; the curvature parameters were y = 5 (a+ z 43) 
and y = 11 (a+ M 21). 

In agreement with experimental measurements, the skin friction coefficient (Cf) 
increases and the slope of the mean velocity profile in the logarithmic region decreases 
with increasing curvature. Turbulence intensities and the Reynolds shear stress (when 
scaled with wall variables) decrease with increasing curvature in the outer part of the 
flow, also in agreement with experimental data. However, unlike the experiments, in 
the computations these quantities also decrease with curvature near the wall. This 
difference is probably due to the large values of a+ in most experiments. The 
distribution of the turbulent kinetic energy among the velocity components also 
changes with curvature, with the streamwise component taking an increasing fraction 
of the energy. This is a result of lower intercomponent energy transfer by the pressure 
strain correlations in the Reynolds stress budget equations. 

A new velocity scale, which is a function of both the curvature parameter y and the 
distance to the wall y has been obtained from the mean streamwise momentum 
equation. When normalized with this velocity scale some turbulence statistics of the 
plane channel and the transversely curved flows collapse in the outer part of the flow 
(y' > 30). 

As the curvature increases, the correlation between the streamwise and wall normal 
velocity increases near the wall. In the higher curvature case ( y  = 11) the correlation 
coefficient decreases in the outer layer indicating a tendency towards stabilization. 

All vorticity intensities decrease with increasing curvature throughout the layer, with 
the exception of the normal vorticity intensity, which is not affected near the wall 
(y+  < 7). The axial (streamwise) vorticity intensity profile suggests that, as the 
curvature increases, the near-wall streamwise vortices are weaker but have a radius 
similar to that of the plane channel. Their position relative to the wall is also not 
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affected by the curvature. As curvature increases, the vorticity vector near the wall 
tends to be increasingly oriented in the direction normal to the wall. 

Another effect of the transverse curvature is the longer streamwise length of the low- 
speed streaks. The mean spanwise spacing of the low-speed streaks is less than 100 wall 
units very near the wall and increases to greater than 100 farther from the wall. 

Near-wall internal shear layers are common in the two transversely curved flows 
computed. As the shear layers lift away from the surface of the cylinder they have large 
spanwise lengthscales relative to the cylinder radius. 
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